Subspace-based methods for the identification of linear time-invariant systems
نویسنده
چکیده
An overview of subspace-based system identification methods is presented. Comparison between diferent algorithms are given and similarities pointed out. Abstract-Subspace-based methods for system identification have attracted much attention during the past few years. This interest is due to the ability of providing accurate state-space models for multivariable linear systems directly from input-output data. The methods have their origin in classical state-space realization theory as developed in the 1960s. The main computational tools are the QR and the singular-value decompositions. Here, an overview of existing subspace-based techniques for system identification is given. The methods are grouped into the classes of realization-based and direct techniques. Similarities between different algorithms are pointed out, and their applicability is commented upon. We also discuss some recent ideas for improving and extending the methods. A simulation example is included for comparing different algorithms. The subspace-based approach is found to perform competitive with respect to prediction-error methods, provided the system is properly excited.
منابع مشابه
Time-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملAdaptive fuzzy pole placement for stabilization of non-linear systems
A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...
متن کاملRobust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties
In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 31 شماره
صفحات -
تاریخ انتشار 1995